Document last modified: 3/31/15

<u>Page</u>	Correction
iii	Karl Kerchner, Lebanon County Conservation District
3	URL link has been changed to: http://www.deq.virginia.gov/Portals/0/DEQ/Water/Publications/TechBulletin1.pdf

- 3rd paragraph, 1st sentence: 2,000 cubic feet storage capacity (with 12" freeboard) for each 35 tributary drainage acre.
- Last paragraph, 1st sentence: "As with other sediment barriers, compost socks should not be 62 placed in areas of concentrated flow. They should be placed parallel..."

TABLE 4.2

64

Compost Standards						
Organic Matter Content	25% - 100% (dry weight basis)					
Organic Portion	Fibrous and elongated					
рН	5.5 - 8.5					
Moisture Content	30% - 60%					
Particle Size	30% - 50% pass through 3/8" sieve					
Soluble Salt Concentration	5.0 dS/m (mmhos/cm) Maximum					

- 77 (f) Add the slope length (L_1) from step (a) to the result from step (e). This is the maximum allowable slope length for the entire slope.
- Note under Standard Construction Detail # 4-12 : "Adapted from Lebanon County 88 Conservation District"

112

$$T_{c(sheet flow)} = \left[\frac{2(L)(n)}{3(S)^{0.5}}\right]^{0.4673}$$

124 Equation for 2-year storm

$$I = \frac{170}{T_c + 17} = \frac{170}{23.24 + 17} = \frac{170}{40.24} = 2.63 in / hr$$

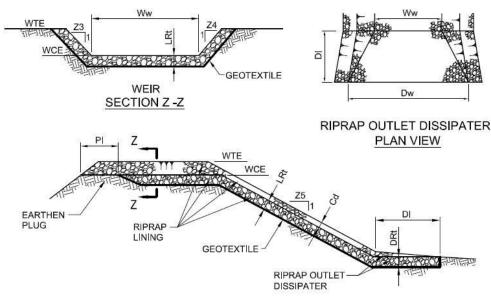
124 Equation for 10-year storm

$$I = \frac{170}{T_c + 23} = \frac{170}{26.19 + 23} = \frac{170}{49.19} = 3.46in/hr$$

- 125 Overland Flow Time $T_{of} = 11.6$ and $T_c = 23.24$
- 135 Note under Table 6.6 should reference PennDOT Pub 408 section 850.2(a)2.

<u>Page</u>

Correction


160 Item 7 – The recommended minimum surface area (SA_{min}) at the top of the settling volume (elevation 3)...

q_{out} = basin discharge rate at elevation 3 on E&S Worksheet #15.

Item 13 – 1st sentence should refer to Standard Construction Detail # 7-17.

193

STANDARD CONSTRUCTION DETAIL # 7-12 SedIment Basin Emergency Spillway with Riprap Lining

EMBANKMENT SECTION ALONG EMERGENCY SPILLWAY

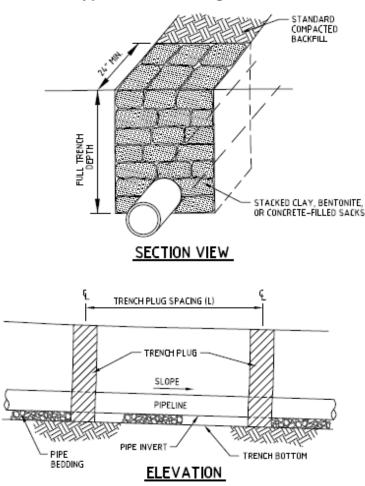
2	2	7
-	-	

ſ				RISER		BARREL				EMBANKMENT		CLEAN		
		74	70	BOT.	00507			INLET		OUTLET	TOP	TOP	OUT	BOTTOM
	TRAP	Z1	Z2	PERF.	CREST	84 A T 1	DIA.	ELEV.	LENGTH	ELEV.	ELEV.	WIDTH	ELEV.	ELEV.
	NO.	(ГТ)	(FT)	ELEV. (FT)	ELEV. (FT)	MAT'L	Db (IN)	BIE (FT)	BI (FT)	BOE (FT)	ETE (FT)	ETW (FT)	COE (FT)	BE (FT)
ŀ				(11)	(17)		(111)	(11)	(11)	(11)	(11)	(11)	(•••)	()

229 For equation: $Q_f = \frac{0.464}{n} D^{8/3} S^{1/2}$ n = Manning's "n"

247 $X=(V^{2}/2g)^{0.5}[(1+m/p)^{0.5}+1+m/2p]p^{0.5}$

266 Table 11.2 should state that the Permanent Fertilizer Type/rate would be 10-20-20 at 1000 lbs./ac


Page_

Correction

- 268 2. If high-quality seed is used, for most sites seed spring oats at a rate of 2 bushels per acre, winter wheat at 1.5 bushels per acre, and winter rye at 1 bushel per acre. If germination is below 90%, increase these suggested seeding rates by 0.5 bushel per acre.
- 278 Topsoil should be applied and prepared as described on page 263 prior to sod placement.
- 281 Figure 11.6, Notes: 1. CELLS SHALL BE ANCHORED SECURELY TO PREVENT DISPLACEMENT...

291

STANDARD CONSTRUCTION DETAIL # 13-4 Typical Trench Plug Installation

293 Under Table 13.2 the following note should be added: **Permanent waterbars are required at** all stream, river, and other water-body crossings as well as upslope from roadway and railroad cut slopes.

380

$$T_{c(sheet flow)} = \left[\frac{2(L)(n)}{3(S)^{0.5}}\right]^{0.4673}$$

Page	Correction	
384	Worksheet #13 – Lines 12 and 13 should read:	
	(SAmin) REQUIRED SURFACE AREA AT ELEVATION 3 SURFACE AREA PROVIDED AT ELEVATION 3	(SQ. FT.) (SQ. FT.)
387	Note 2 should say "From E&S Worksheet #14, sixth column"	